下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:
(1)请在给出的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)估计使用年限为10年时,维修费用为多少?(参考数值:)
设函数,若对所有的,都有成立,求实数的取值范围.
如图,在四棱锥中,底面为矩形,侧棱底面,,,,为的中点.(Ⅰ)求直线与所成角的余弦值;(Ⅱ)在侧面内找一点,使面,并求出点到和的距离.
已知直线l的参数方程为,曲线C的参数方程为.(Ⅰ)将曲线C的参数方程转化为普通方程;(Ⅱ)若直线l与曲线C相交于A、B两点,试求线段AB的长
有红蓝两粒质地均匀的正方体骰子,红色骰子有两个面是8,四个面是2,蓝色骰子有三个面是7,三个面是1,两人各取一只骰子分别随机掷一次,所得点数较大者获胜。(Ⅰ)分别求出两只骰子投掷所得点数的分布列及期望;(Ⅱ)求投掷蓝色骰子者获胜的概率是多少?
根据如图所示的流程图,将输出的的值依次分别记为,将输出的的值依次分别记为.(Ⅰ)求数列,通项公式;(Ⅱ)依次在与中插入个3,就能得到一个新数列,则是数列中的第几项?(Ⅲ)设数列的前项和为,问是否存在这样的正整数,使数列的前项的和,如果存在,求出的值,如果不存在,请说明理由.