、如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点。(Ⅰ) 若PA=AB=2,求三棱锥P-ABC的体积;(Ⅱ)证明:BE⊥平面PAC(Ⅲ)如何在BC上找一点F,使AD//平面PEF?并说明理由。
已知函数.(1)求的单调递增区间;(2)在中,三内角的对边分别为,已知,,.求的值.
设函数.(1)当时,求曲线在处的切线方程;(2)当时,求函数的单调区间;(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.
已知椭圆:的长轴长为4,且过点.(1)求椭圆的方程;(2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.
若数列的前项和为,对任意正整数都有,记. (1)求,的值;(2)求数列的通项公式;(3)若求证:对任意.
如图,在四棱锥中,底面为菱形,其中,,为的中点.(1) 求证:;(2) 若平面平面,且为的中点,求四棱锥的体积.