若数列的前项和为,对任意正整数都有,记. (1)求,的值;(2)求数列的通项公式;(3)若求证:对任意.
已知函数f(x)=, (1)求f(x)的定义域,并作出函数的图像; (2)求f(x)的不连续点x0; (3)对f(x)补充定义,使其是R上的连续函数.
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i)求恰好摸5次停止的概率; (ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E. (Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
设一部机器在一天内发生故障的概率为02,机器发生故障时全天停止工作若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元。求一周内期望利润是多少?
设P在[0,5]上随机地取值,求方程x2+px+=0有实根的概率.
已知连续型随机变量ζ的概率密度函数f(x)= (1)求常数a的值,并画出ζ的概率密度曲线; (2)求P(1<ζ<)