.(本小题满分14分) 某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1) 问各班被抽取的学生人数各为多少人?(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
已知曲线y=x3+,求曲线过点P(2,4)的切线方程;
已知函数f(x)=,且f(x)的图象在x=1处与直线y=2相切. (1)求函数f(x)的解析式; (2)若P(x0,y0)为f(x)图象上的任意一点,直线l与f(x)的图象切于P点,求直线l的斜率k的取值范围.
在F1赛车中,赛车位移与比赛时间t存在函数关系s=10t+5t2(s的单位为m,t的单位为s).求: (1)t=20s,Δt=0.1s时的Δs与; (2)t=20s时的瞬时速度.
某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x. (1)求在第1s内的平均速度; (2)求在1s末的瞬时速度; (3)经过多少时间该物体的运动速度达到14m/s?
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0). (1)当a=1,b=-2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.