在△中,∠,∠,∠的对边分别是,且 .(1)求∠的大小;(2)若,,求和的值.
(本小题满分10分)选修4-1,几何证明选讲 如图,四边形是的内接四边形,的延长线与的延长线交于点,且. (1)证明:; (2)设不是的直径,的中点为,且, 证明:为等边三角形.
已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.
已知函数,其中是常数. (1)当时,求曲线在点处的切线方程; (2)若在定义域内是单调递增函数,求的取值范围.
设数列的前项和为,点在直线上. (1)求数列的通项公式; (2)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和.
如图,菱形的边长为4,,.将菱形沿 对角线折起,得到三棱锥,点是棱的中点,. (1)求证:OM∥平面ABD; (2)求证:平面DOM⊥平面ABC (3)求三棱锥B﹣DOM的体积.