已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费为元,用电炉烧开水每吨开水费为元,,;其中为每吨煤的价格(单位:元),为每百度电的价格(单位:元),如果烧煤时的费用不超过用电炉时的费用,则仍用原备的锅炉烧水,否则就用电炉烧水. (1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数; (2)如果每百度电价不低于60元,则用煤烧水时每吨煤的最高价格是多少?
如图,江北水城湖畔有一块边长为2a的等边三角形的草坪,在这块草坪内安装灌溉水管DE,使DE把草坪分成面积相等的两部分,D在AB上,E在AC上. ①设AD = x(x≥0),DE = y,求y关于x的函数关系式;②为节约成本,应如何安装,才能使灌溉水管DE最短,最短是多少?
平面内给定三个向量=(3,2),=(-1,2)=(4,1). ①若∥,求实数k; ②设,满足⊥(+),且,求
已知向量=(cosx + sinx,sinx),=(cosx - sinx,2cosx),设f(x)=•.①求函数f(x)的最小正周期; ②当x∈[]时,求函数f(x)的最大值及最小值.
若函数, (1)求函数的解析式; (2)若关于x的方程有三个零点,求实数k的取值范围.