(1)计算: 2 - 1 + 12 - sin 30 ° ;
(2)化简并求值: 1 - a a + 1 ,其中 a = - 1 2 .
在13×13的网格图中,已知△ABC和点M(1,2). (1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′; (2)写出△A′B′C′的各顶点坐标.
先化简,再求值:,其中x=2.
如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G. (1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式; (2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明; (3)请根据图2证明:△FGC∽△PFB.
如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点. (1)求此二次函数的解析式; (2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标; (3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.
在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y): 方案一:提供8000元赞助后,每张票的票价为50元; 方案二:票价按图中的折线OAB所表示的函数关系确定. (1)若购买120张票时,按方案一和方案二分别应付的购票款是多少? (2)求方案二中y与x的函数关系式; (3)至少买多少张票时选择方案一比较合算?