有三张卡片(背面完全相同)分别写有、、,把它们背面朝上洗匀后,小明从中抽取一张,记下这个数后放回洗匀,小白又从中抽出一张.(1)小明抽取的卡片为的概率是 ;两人抽取的卡片都为的概率是 .(2)小刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小明获胜,否则小白获胜.你认为这个游戏规则对谁有利?请说明理由.
计算:
在平面直角坐标系中,A,B,C三点的坐标分别为( 0,1 ),( 3,0 ),( 2,2 )(1)求△ABC的面积;(2)如果在第二象限内有一点P( a,2 )试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,请求出点P的坐标,若不存在,请说明理由.
如图,在直角坐标系中,长方形OABC的边0C在x轴上,OA=5,OC=4,若矩形以每秒2个单位长度的速度沿y轴正方向运动。同时点M从O点出发,以每秒1个单位长度的速度沿O→C→B→A的路线运动。当M点运动到点A时停止运动,矩形OABC也停止运动.(1)求点M从O点运动到点A所需时间;(2)求点M运动了6秒后的位置;(3)求当运动停止时,矩形扫过的面积.
如图,在方格中平移三角形ABC,使点A移到点M,点B,C应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形,如果直接把三角形ABC平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗?