在中国共产党成立100周年之际,我市某中学开展党史学习教育活动.为了了解学生学习情况,在七年级随机抽取部分学生进行测试,并依据成绩(百分制)绘制出以下两幅不完整的统计图.请根据图中信息回答下列问题:
(1)本次抽取调查的学生共有 人,扇形统计图中表示 C等级的扇形圆心角度数为 .
(2) A等级中有2名男生,2名女生,从中随机抽取2人参加学校组织的知识问答竞赛,请用画树状图或列表的方法,求恰好抽到一男一女的概率.
如图所示,抛物线y=-x2+mx+n经过点A(1,0)和点C(4,0),与y轴交于点B。 (1)求抛物线所对应的解析式。 (2)连接直线BC,抛物线的对称轴与BC交于点E,F为抛物线的顶点,求四边形AECF的面积。
已知在平面直角坐标系中,二次函数的图像经过点和点; (1)求这个二次函数的解析式; (2)将这个二次函数的图像向上平移,交轴于点,其纵坐标为,请用的代数式表示平移后函数图象顶点的坐标; (3)在第(2)小题的条件下,如果点的坐标为,平分,求的值;
已知关于的一元二次方程有实数根,为正整数. (1)求的值; (2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移9个单位,求平移后的图象的表达式; (3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于-5时,求k的取值范围.
已知二次函数y=x2﹣4x+3. (1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况; (2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
如图,在平面直角坐标系中,O是坐标原点,抛物线与轴正半轴交于点A,对称轴DE交轴于点E.点B在第二象限,过点B作BC⊥x轴于点C,连结AB,且AB=10,AC=8.将点B向右平移5个单位后,恰好与抛物线的顶点D重合. (1)求点D的坐标; (2)求该抛物线的解析式.