在四棱锥中,底面 ABCD 是正方形,若 AD = 2 , QD = QA = 5 , QC = 3 .
(1)证明:平面 QAD ⊥ 平面 ABCD ;
(2)求二面角 B - QD - A 的平面角的余弦值.
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱雉 P - A 1 B 1 C 1 D 1 ,下部分的形状是正四棱柱 ABCD - A 1 B 1 C 1 D 1 (如图所示),并要求正四棱柱的高 P O 1 的四倍.
(1)若 AB = 6 m , PO 1 = 2 m ,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为 6 m ,则当 P O 1 为多少时,仓库的容积最大?
如图,在直三棱柱 ABC - A 1 B 1 C 1 中, D , E 分别为 AB , BC 的中点,点 F 在侧棱 B 1 B 上, 且 B 1 D ⊥ A 1 F , A 1 C 1 ⊥ A 1 B 1 。
求证:(1)直线 DE / / 平面 A 1 C 1 F ;
(2) 平面 B 1 DE ⊥ 平面 A 1 C 1 F ;
在 △ ABC 中, AC = 6 , cos B = 4 5 , C = π 4 .
(1) 求 AB 的长;
(2) 求 cos A - π 6 的值 ;
已知函数 f ( x ) =│ x+1│-│ x-2│.
(1)求不等式 f ( x ) ≥1的解集;
(2)若不等式 f ( x ) ≥ x 2- x+ m的解集非空,求实数 m的取值范围.
在直角坐标系xOy中,直线l1的参数方程为 x = 2 + t , y = kt , (t为参数),直线l2的参数方程为 x = - 2 + m , y = m k , ( m 为参数) .设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设 l 3 : ρ cos θ + sin θ - 2 = 0 ,M为l3与C的交点,求M的极径.