在直角坐标系xOy中,直线l1的参数方程为 x = 2 + t , y = kt , (t为参数),直线l2的参数方程为 x = - 2 + m , y = m k , ( m 为参数) .设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设 l 3 : ρ cos θ + sin θ - 2 = 0 ,M为l3与C的交点,求M的极径.
已知直角坐标系的两点A(-1,0),B(3,2),写出直线AB的方程的一个算法。
“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目: “今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何。 用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法。
在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问 (1)在y轴上是否存在点M,满足? (2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
如图,已知正方体的棱长为a,M为的中点,点N在上,且,试求MN的长.
已知,,,求证其为直角三角形.