若曲线上有关于直线对称的不同的两点,求实数的取值范围.
已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1. (1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;(2)证明:曲线C过定点;(3)若曲线C与x轴相切,求k的值.
如图,圆O1和圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1和圆O2的切线PM、PN(M、N为切点),使得.试建立平面直角坐标系,并求动点P的轨迹方程.
求过两圆C1:x2+y2-2y-4=0和圆C2:x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程.
已知点A(4,6),B(-2,4),求: (1)直线AB的方程;(2)以线段AB为直径的圆的方程.
设三条直线l1:x+y-1=0,l2:kx-2y+3=0,l3:x-(k+1)y-5="0." 若这三条直线交于一点,求k的值.