已知直三棱柱 ABC - A 1 B 1 C 1 中,侧面为正方形, AB = BC = 2 ,E,F分别为 AC 和 C C 1 的中点,D为棱 A 1 B 1 上的点. BF ⊥ A 1 B 1
(1)证明: BF ⊥ DE ;
(2)当 B 1 D 为何值时,面 B B 1 C 1 C 与面 DFE 所成的二面角的正弦值最小?
选修4-2:矩阵与变换已知矩阵,A的逆矩阵.(1)求a,b的值;(2)求A的特征值.
选修4-1:几何证明选讲如图,过点A的圆与BC切于点D,且与AB、AC分别交于点E、F.已知AD为∠BAC的平分线,求证:EF∥BC.
给定一个数列,在这个数列里,任取项,并且不改变它们在数列中的先后次序,得到的数列的一个阶子数列.已知数列的通项公式为,等差数列,,是数列的一个3阶子数列.(1)求的值;(2)等差数列是的一个阶子数列,且,求证:;(3)等比数列是的一个阶子数列,求证:.
已知函数,其中为常数. (1)若,求曲线在点处的切线方程; (2)若,求证:有且仅有两个零点; (3)若为整数,且当时,恒成立,求的最大值.
如图,在平面直角坐标系中,椭圆E:的离心率为,直线l:与椭圆E相交于A,B两点,,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求a,b的值;(2)求证:直线MN的斜率为定值.