如图,直线 y = - 3 2 x + 6 与 x 轴交于点 B ,与 y 轴交于点 A ,点 P 为线段 AB 的中点,点 Q 是线段 OA 上一动点(不与点 O 、 A 重合).
(1)请直接写出点 A 、点 B 、点 P 的坐标;
(2)连接 PQ ,在第一象限内将 ΔOPQ 沿 PQ 翻折得到 ΔEPQ ,点 O 的对应点为点 E .若 ∠ OQE = 90 ° ,求线段 AQ 的长;
(3)在(2)的条件下,设抛物线 y = a x 2 - 2 a 2 x + a 3 + a + 1 ( a ≠ 0 ) 的顶点为点 C .
①若点 C 在 ΔPQE 内部(不包括边),求 a 的取值范围;
②在平面直角坐标系内是否存在点 C ,使 | CQ - CE | 最大?若存在,请直接写出点 C 的坐标;若不存在,请说明理由.
如图,一次函数的图象与反比例函数的图象交于两点,与轴交于点,与轴交于点,已知,,点的坐标为.(1)求反比例函数的解析式.(2)求一次函数的解析式.
如图所示,已知是半圆的直径,弦,是延长线上一点,.判断直线与半圆的位置关系,并证明你的结论.
“教师节”快要到了,张爷爷欲用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册.(1)若设8元的图书购买册,6元的图书购买册,求与之间的函数关系式.(2)若每册图书至少购买2册,求张爷爷有几种购买方案?并写出取最大值和取最小值时的购买方案.
( 9分) “五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:(1)前往 A地的车票有_____张,前往C地的车票占全部车票的________%; (2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B地车票的概率为______; (3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
(8分)如图,某军港有一雷达站,军舰停泊在雷达站的南偏东方向36海里处,另一艘军舰位于军舰的正西方向,与雷达站相距海里.求:(1)军舰在雷达站的什么方向?(2)两军舰的距离.(结果保留根号)