开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点 A 与佛像 BD 的底部 D 在同一水平线上.已知佛像头部 BC 为 4 m ,在 A 处测得佛像头顶部 B 的仰角为 45 ° ,头底部 C 的仰角为 37 . 5 ° ,求佛像 BD 的高度(结果精确到 0 . 1 m .参考数据: sin 37 . 5 ° ≈ 0 . 61 , cos 37 . 5 ° ≈ 0 . 79 , tan 37 . 5 ° ≈ 0 . 77 ) .
如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E、F. (1)求证:△OEF是等腰直角三角形. (2)若AE=4,CF=3,求EF的长.
解不等式组,并把它的解集在数轴上表示出来.
如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为. (1)请直接写出点的坐标; (2)求抛物线的解析式; (3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
如图:等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2. (1)求证:四边形AO1BO2是菱形; (2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2DO2; (3)在(2)的条件下,若,求的值.
某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.求: (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)