为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).
请根据图中信息答案下列问题:
(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
(2)求扇形统计图中表示“满意”的扇形的圆心角度数;
(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?
解不等式组,并写出它的整数解.
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
如图,点在轴的正半轴上,,,.点从点出发,沿轴向左以每秒1个单位长的速度运动,运动时间为秒. 求点的坐标; 当时,求的值; 以点为圆心,为半径的随点的运动而变化,当与四边形 的边(或边所在的直线)相切时,求的值.
(第27题图)
随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.⑴如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞 把;⑵生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?⑶已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照⑵中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是 ;= ;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?