如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.
如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).
23.如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN. (1)求证:四边形AMDN是平行四边形; (2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形.
班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如图1的频数分布折线图. (1)请根据图1,回答下列问题: ①这个班共有______名学生,发言次数是5次的男生有____人、女生有____人; ②男、女生发言次数的中位数分别是____ 次和______次; (2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.
已知一元二次方程. (1)若方程有两个实数根,求m的范围; (2)若方程的两个实数根为,,且+3=3,求m的值.
先化简:,再选取一个合适的a值代入计算.