一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,绿球1个.(1)求从袋中任意摸出一个球是红球的概率;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率(两个红球分别记作红1、红2).
如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E. (1)试判断△BDE的形状,并说明理由; (2)若,,求△BDE的面积.
△ABC中,AB=AC=5,BC=6,建立适当的直角坐标系,并写出点A、B、C的坐标.
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF度数.
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC, 求证:AD是∠BAC的平分线.
如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.