如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段 AB ,线段 MN 在网格线上.
(1)画出线段 AB 关于线段 MN 所在直线对称的线段 A 1 B 1 (点 A 1 , B 1 分别为 A , B 的对应点);
(2)将线段 B 1 A 1 绕点 B 1 顺时针旋转 90 ° 得到线段 B 1 A 2 ,画出线段 B 1 A 2 .
如图,已知△ABC是直角三角形,,BD⊥AC于点D,AB=,BC=,求BD长.
已知,求的值.
已知:点A(2,-2)和点B(1,-4)在一次函数的图象上,(1)求和的值;(2)求当x=时的函数值.
如图,抛物线(a0)与双曲线相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标. (其中点E和点A,点C和点B分别是对应点)
在边长为10的正方形ABCD中,以AB为直径作半圆O,如图①,E是半圆上一动点,过点E作EF⊥AB,垂足为F,连结DE.(1)当DE=10时,求证:DE与圆O相切;(2)求DE的最长距离和最短距离;(3)如图②,建立平面直角坐标系,当DE =10时,试求直线DE的解析式.