若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知 ΔABC 是比例三角形, AB = 2 , BC = 3 ,请直接写出所有满足条件的 AC 的长;
(2)如图1,在四边形 ABCD 中, AD / / BC ,对角线 BD 平分 ∠ ABC , ∠ BAC = ∠ ADC .求证: ΔABC 是比例三角形.
(3)如图2,在(2)的条件下,当 ∠ ADC = 90 ° 时,求 BD AC 的值.
今年5月31日是世界卫生组织发起的第25个“世界无烟日”.为了更好地宣传吸烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查了部分吸烟人群,并将调查结果绘制成统计图. 根据以上信息,解答下列问题: (1)本次接受调查的总人数是人,并把条形统计图补充完整. (2)在扇形统计图中,C选项的人数百分比是,E选项所在扇形的圆心角的度数是. (3)若通川区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你对这部分人群有何建议?
如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=900,抛物线经过A、B、C三点,其顶点为M. 求抛物线的解析式; 试判断直线CM与以AB为直径的圆的位置关系,并加以证明; 在抛物线上是否存在点N,使得?如果存在,那么这样的点有几个?如果不存在,请说明理由。
如果方程的两个根是,那么请根据以上结论,解决下列问题: 已知关于的方程求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数; 已知满足,求; 已知满足求正数的最小值。
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF. (1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD; (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; (3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系
如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED, 点G是BC、AE延长线的交点,AG与CD相交于点F。 求证:四边形ABCD是正方形; 当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论。