如图,在平面直角坐标系中,点A在抛物线y=-x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).
(1)求线段AB的长;
(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当ΔPBE的面积最大时,求PH+HF+12FO的最小值;
(3)在(2)中,PH+HF+12FO取得最小值时,将ΔCFH绕点C顺时针旋转60°后得到△CF'H',过点F'作CF'的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).
请你结合图表中所提供的信息,回答下列问题: (1)表中m= ,n= ; (2)请补全频数分布直方图; (3)在扇形统计图中,这一组所占圆心角的度数为 度; (4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.
如图二次函数的图象经过A(-1,0)和B(3,0)两点,且交轴于点C. (1)试确定、的值; (2)若点M为此抛物线的顶点,求△MBC的面积.
如图,点A、B、C是⊙O上的三点,AB∥OC. (1)求证:AC平分∠OAB; (2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.
已知关于x的一元二次方程x2-2(m-1)x-m(m+2)=0. (1)求证:方程总有两个不相等的实数根; (2)若x=-2是此方程的一个根,求代数式2018-3(m-1)2的值.