如图,将矩形 ABCD (纸片)折叠,使点 B 与 AD 边上的点 K 重合, EG 为折痕;点 C 与 AD 边上的点 K 重合, FH 为折痕.已知 ∠ 1 = 67 . 5 ° , ∠ 2 = 75 ° , EF = 3 + 1 ,求 BC 的长.
先化简,再求值: x + 2 x - 2 - x - 1 x 2 - 4 ÷ 1 x + 2 ,其中.
计算: | 2 - 3 | - 16 + 1 3 0 .
如图1,已知抛物线 l 1 : y = - 1 2 x 2 + x + 3 与轴交于点,过点的直线与抛物线交于另一点,点,到直线的距离相等.
(1)求直线的表达式;
(2)将直线向下平移 5 2 个单位,平移后的直线与抛物线交于点,(如图,判断直线是否平分线段,并说明理由;
(3)已知抛物线,,为常数)和直线有两个交点,,对于任意满足条件的,线段都能被直线平分,请直接写出与,之间的数量关系.
已知正方形,点在直线上.
(1)若是直线上一点,且,求证:;(请利用图1所给的图形加以证明)
(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;
(3)若点在直线上,且平分,探索线段、、之间的数量关系,并说明理由.
如图,已知是的直径,,是上两点,.过点作交的延长线于点.
(1)求证:是的切线;
(2)若 cos ∠ CED = 1 3 ,,求的直径.