如图,在水平地面上有一幢房屋 BC 与一棵树 DE ,在地面观测点 A 处测得屋顶 C 与树梢 D 的仰角分别是 45 ° 与 60 ° , ∠ CAD = 60 ° ,在屋顶 C 处测得 ∠ DCA = 90 ° .若房屋的高 BC = 6 米,求树高 DE 的长度.
(本题6分)计算:
(本题满分12分)如图10,已知A、B两点的坐标分别为(2,O)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,(1)求点P的坐标;(2)连BP、AP,在PB上任取一点E,连AE,将线段AE绕A点顺时针旋转90°到AF,连BF,交AP于点G,当E在线段BP上运动时,(不与B、P重合),求;(3)点Q是弧AP上一动点,(不与A.P重合)连用PQ.AQ,BQ,求
(本题满分10分)在等边△ABC中,D、E分别在AC、BC上,且AD=CE=nAC,连AE、BD相交于P,过B作BQ⊥AE于点Q,连CP. (1)∠BPQ=______,=____ (2)若BP⊥CP,求; (3)当n=_____时,BP⊥CP?
(本题满分10分)在一个口袋中有n个小球,其中2个是白球,其余为红球,这些球除颜色外,其余都相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是. (1)求n的值; (2)甲、乙、丙三人玩一个游戏:把这n个球分别标号为1,2,3,…n,三人按先后顺序各摸出一个球(不放回),哪个摸出一号球,哪个获胜.(若不分胜负,再重新摸)请你用画树形图的方法分析:他们各自获胜的机会与他们摸球的顺序是否有关?若有关,请指出第几个摸球更有利;若无关,请说明理由
已知:如图8,AD是△ABC外接圆⊙O的直径,AE是△ABC的边BC上的高,DF⊥ BC,F为垂足. (1)求证:BF=EC; (2)若C点是AD的中点,且DF=3AE=3,求BC的长.