(1)计算: ( - 1 ) 2020 + ( π - 1 ) 0 × ( 2 3 ) - 2 ;
(2)先化简 ( x 2 x + 1 - x + 1 ) ÷ x 2 - 1 x 2 + 2 x + 1 ,再从 - 1 ,0,1中选择合适的 x 值代入求值.
如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求直线的解析式. (2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时的取值范围. (3)设从出发起,运动了秒.当,两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:∠DAF=∠CDE (2)问△ADF与△DEC相似吗?为什么? (3)若AB=4,AD=3,AE=3,求AF的长.
为了拉动内需,我省启动“家电下乡”活动。在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元. (1)A型洗衣机和B型洗衣机的售价各是多少元? (2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示). ⑴小明的这三件文具中,可以看做是轴对称图形的是___________(填字母代号); ⑵小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?
(本小题满分7分) (1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。(结果保留根号) (2)如图,已知平行四边形ABCD中,点为边的中点,延长相交于点. 求证:.