某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.
.
解不等式组:,并把它的解集表示在数轴上.
如图,点P是直线:上的点,过点P的另一条直线交抛物线于A、B两点. (1)若直线的解析式为,求A、B两点的坐标; (2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标; ②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. (3)设直线交轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.
已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G. (1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证; (2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出的值.
科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种. (1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由; (2)温度为多少时,这种植物每天高度的增长量最大? (3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.