为了落实党的“精准扶贫”政策, A 、 B 两城决定向 C 、 D 两乡运送肥料以支持农村生产,已知 A 、 B 两城共有肥料500吨,其中 A 城肥料比 B 城少100吨,从 A 城往 C 、 D 两乡运肥料的费用分别为20元 / 吨和25元 / 吨;从 B 城往 C 、 D 两乡运肥料的费用分别为15元 / 吨和24元 / 吨.现 C 乡需要肥料240吨, D 乡需要肥料260吨.
(1) A 城和 B 城各有多少吨肥料?
(2)设从 A 城运往 C 乡肥料 x 吨,总运费为 y 元,求出最少总运费.
(3)由于更换车型,使 A 城运往 C 乡的运费每吨减少 a ( 0 < a < 6 ) 元,这时怎样调运才能使总运费最少?
如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动. (1)用含有t的代数式表示PE= ; (2)探究:当t为何值时,四边形PQBE为梯形? (3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合). (1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °. (2)若四边形OBCD为平行四边形. ①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数; ②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.
如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E. (1)求证:BE=CE; (2)若∠B=70°,求弧DE的度数. (3)若BD=2,BE=3,求AC的长.
如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2. (1)求⊙O的半径; (2)求证:CE=BE.
如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.