某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了 20 % .若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的 90 % ,大樱桃的售价最少应为多少?
如图,在⊙O中,AB是直径, CD是弦,AB⊥CD。(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P在劣弧CD上(不与C、D重合)时,∠CPD与∠COB数量关系是什么?(直接写出答案)
△ABC在平面直角坐标系中的位置如图所示,A(-1,4),B(-2,2),C(0,1),将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.写出各点坐标。
已知关于x的方程x2-2(k-1) x +k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若,求k的值.
解方程:(1)x2-1=2(x+1)(2)y2+3y-2=0
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.