如图,在⊙O中,AB是直径, CD是弦,AB⊥CD。(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P在劣弧CD上(不与C、D重合)时,∠CPD与∠COB数量关系是什么?(直接写出答案)
如图,抛物线与x轴交于A,B两点,与直线相交于B,C两点,连结A,C两点。 (1)写出直线BC的解析式 (2)求△ABC的面积
已知二次函数当x=时,有最大值,且当x=0时,y= ,求二次函数的解析式。
解方程 (1)、(2)、(x+3)(x-6)=
某商场将进价为30元的台灯按40元出售,平均每月能售出600盏。调查表明,这种台灯的售价每上涨1元,其销售量减少10盏。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少盏?
如图,二次函数的图象经过A 、B、C三点. (1)观察图象,写出A 、B、C三点的坐标,并求出抛物线解析式; (2)求此抛物线的顶点坐标和对称轴; (3)观察图象,当x取何值时,y<0?