如图,直线 y = − 1 2 x + 1 与 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = − x 2 + bx + c 经过 A 、 B 两点.
(1)求抛物线的解析式;
(2)点 P 是第一象限抛物线上的一点,连接 PA 、 PB 、 PO ,若 ΔPOA 的面积是 ΔPOB 面积的 4 3 倍.
①求点 P 的坐标;
②点 Q 为抛物线对称轴上一点,请直接写出 QP + QA 的最小值;
(3)点 M 为直线 AB 上的动点,点 N 为抛物线上的动点,当以点 O 、 B 、 M 、 N 为顶点的四边形是平行四边形时,请直接写出点 M 的坐标.
某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?
如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.
(1)计算: (2)化简:.
如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由.
如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC. (1)写出C,D两点的坐标; (2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标; (3)证明AB⊥BE.