如图,直线 y = − 1 2 x + 1 与 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = − x 2 + bx + c 经过 A 、 B 两点.
(1)求抛物线的解析式;
(2)点 P 是第一象限抛物线上的一点,连接 PA 、 PB 、 PO ,若 ΔPOA 的面积是 ΔPOB 面积的 4 3 倍.
①求点 P 的坐标;
②点 Q 为抛物线对称轴上一点,请直接写出 QP + QA 的最小值;
(3)点 M 为直线 AB 上的动点,点 N 为抛物线上的动点,当以点 O 、 B 、 M 、 N 为顶点的四边形是平行四边形时,请直接写出点 M 的坐标.
如图所示, (1)过点C能画出几条与直线AB平行的直线? (2)过点D与直线AB平行的直线与(1)中所画的直线平行吗? (3)由(2)你发现了什么结论?
如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色. (1)GC的长为2 ,FG的长为; (2)着色面积为; (3)若点P为EF边上的中点,则CP的长为.
如图,把长方形ABCD的两角折叠,折痕为EF、HG,使HD与BF在同一直线上,已知长方形的两组对边分别平行,试说明两条折痕也相互平行.
已知:如图所示, (1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标. (2)在x轴上画出点P,使PA+PC最小.