如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.
学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案; (2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由。 (2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?
如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为,点A的坐标为(-6,0). (1)求k的值; (2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试求出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; (3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由。
如果A=为的算数平方根,B=为的立方根,求A+B的平方根。
如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B. 求证:AB=AC+CD.