已知抛物线L:(1)证明:不论k取何值,抛物线L的顶点C总在抛物线上; (2)已知时,抛物线L和x轴有两个不同的交点A、B,求A、B间距取得最大值时k的值;(3)在(2)A、B间距取得最大值条件下(点A在点B的右侧),直线y=ax+b是经过点A,且与抛物线L相交于点D的直线. 问是否存在点D,使△ABD为等边三角形,如果存在,请写出此时直线AD的解析式;如果不存在,请说明理由.
如图1,A、B、C是三种不同型号的卡片,其中A型是边长为a的正方形,B型是长为b、宽为a的长方形,C是边长是b的正方形.(1)小杰同学用1张A型、2张B型和1张C型卡片拼出了一个新的图形(如图2).请根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是: .(2)用第(1)小题中的四张卡片(全部用上)再拼出一个轴对称图形,且能利用这个图形的面积说明第(1)小题中你写出的乘法公式.请你画出这个轴对称图形.
如图,五边形ABCDE是轴对称图形,线段AF所在的直线为对称轴,连接BF、EF,请你找出图中的一对全等三角形,并证明.
判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.
如图,将已知四边形分别在格点图中补成关于已知直线:l、m、n、p为对称轴的轴对称的图形.
如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC是轴对称图形吗?并说明你的理由.