首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 108

我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”.

(1)等边三角形“内似线”的条数为       

(2)如图, ΔABC 中, AB = AC ,点 D AC 上,且 BD = BC = AD ,求证: BD ΔABC 的“内似线”;

(3)在 Rt Δ ABC 中, C = 90 ° AC = 4 BC = 3 E F 分别在边 AC BC 上,且 EF ΔABC 的“内似线”,求 EF 的长.

登录免费查看答案和解析

我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一