如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转90°,试解决下列问题: (1)画出四边形ABCD旋转后的图形;(2)求点C旋转过程中所经过的路径长.
如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) , B ( − 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD .
(1)求抛物线的解析式.
(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.
(3)在(2)的条件下,作 PF ⊥ x 轴于 F ,点 M 为 x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F , N , G , M 四点为顶点的四边形为正方形时,求点 M 的坐标.
如图, AB 是 ⊙ O 的直径,点 D , E 在 ⊙ O 上, ∠ A = 2 ∠ BDE ,点 C 在 AB 的延长线上, ∠ C = ∠ ABD .
(1)求证: CE 是 ⊙ O 的切线;
(2)若 BF = 2 , EF = 13 ,求 ⊙ O 的半径长.
校园超市以4元 / 件购进某物品,为制定该物品合理的销售价格,对该物品进行试销调查.发现每天调整不同的销售价,其销售总金额为定值,其中某天该物品的售价为6元 / 件时,销售量为50件.
(1)设售价为 x 元 / 件时,销售量为 y 件.请写出 y 与 x 的函数关系式;
(2)若超市考虑学生的消费实际,计划将该物品每天的销售利润定为60元,则该物品的售价应定为多少元 / 件?
如图, E , F 是正方形 ABCD 的对角线 AC 上的两点,且 AE = CF .
(1)求证:四边形 BEDF 是菱形;
(2)若正方形边长为4, AE = 2 ,求菱形 BEDF 的面积.
如图, ΔABC 中, A ( − 4 , 4 ) , B ( − 4 , − 2 ) , C ( − 2 , 2 ) .
(1)请画出将 ΔABC 向右平移8个单位长度后的△ A 1 B 1 C 1 ;
(2)求出 ∠ A 1 B 1 C 1 的余弦值;
(3)以 O 为位似中心,将△ A 1 B 1 C 1 缩小为原来的 1 2 ,得到△ A 2 B 2 C 2 ,请在 y 轴右侧画出△ A 2 B 2 C 2 .