如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点 B 处的求救者后,又发现点 B 正上方点 C 处还有一名求救者,在消防车上点 A 处测得点 B 和点 C 的仰角分别为 45 ° 和 65 ° ,点 A 距地面2.5米,点 B 距地面10.5米,为救出点 C 处的求救者,云梯需要继续上升的高度 BC 约为多少米?
(结果保留整数,参考数据: tan 65 ° ≈ 2 . 1 , sin 65 ° ≈ 0 . 9 , cos 65 ° ≈ 0 . 4 , 2 ≈ 1 . 4 )
如图,E是矩形ABCE的边BC上一点,EF⊥AE,EF分别交AC、CD于点M、F,BG⊥AC,垂足为G,BG交AE于点H。 (1)求证:△ABE∽△ECF; (2)找出与△ABH相似的三角形,并证明; (3)若E是BC中点,BC=2AB,AB=2,求EM的长。
在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标. (1)请用树状图或列表求出点P的坐标. (2)求点P落在△AOB内部的概率.
如图,直线与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2. (1)求k的值; (2)点N(a,1)是反比例函数(x>0)图像上的点,在x轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处. (1)求海盗船所在C处距货轮航线AB的距离. (2)若货轮以45海里/时的速度向A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)
先化简,再求值:,其中x是不等式组的整数解.