如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点 B 处的求救者后,又发现点 B 正上方点 C 处还有一名求救者,在消防车上点 A 处测得点 B 和点 C 的仰角分别为 45 ° 和 65 ° ,点 A 距地面2.5米,点 B 距地面10.5米,为救出点 C 处的求救者,云梯需要继续上升的高度 BC 约为多少米?
(结果保留整数,参考数据: tan 65 ° ≈ 2 . 1 , sin 65 ° ≈ 0 . 9 , cos 65 ° ≈ 0 . 4 , 2 ≈ 1 . 4 )
如图,矩形 ABCD 中, AB = 4 , BC = 2 ,点 E 、 F 分别在 AB 、 CD 上,且 BE = DF = 3 2 .
(1)求证:四边形 AECF 是菱形;
(2)求线段 EF 的长.
如图, AB 为 ⊙ O 的直径, C 为 ⊙ O 上一点, D 是弧 BC 的中点, BC 与 AD 、 OD 分别交于点 E 、 F .
(1)求证: DO / / AC ;
(2)求证: DE ⋅ DA = D C 2 ;
(3)若 tan ∠ CAD = 1 2 ,求 sin ∠ CDA 的值.
如图, ΔABC 中,点 E 在 BC 边上, AE = AB ,将线段 AC 绕 A 点旋转到 AF 的位置,使得 ∠ CAF = ∠ BAE ,连接 EF , EF 与 AC 交于点 G .
(1)求证: EF = BC ;
(2)若 ∠ ABC = 65 ° , ∠ ACB = 28 ° ,求 ∠ FGC 的度数.
某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2) m = , n = ;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;
(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).