如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点 B 处的求救者后,又发现点 B 正上方点 C 处还有一名求救者,在消防车上点 A 处测得点 B 和点 C 的仰角分别为 45 ° 和 65 ° ,点 A 距地面2.5米,点 B 距地面10.5米,为救出点 C 处的求救者,云梯需要继续上升的高度 BC 约为多少米?
(结果保留整数,参考数据: tan 65 ° ≈ 2 . 1 , sin 65 ° ≈ 0 . 9 , cos 65 ° ≈ 0 . 4 , 2 ≈ 1 . 4 )
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF. (1)求证:AC=EF; (2)求证:四边形ADFE是平行四边形.
已知:如图,点坐标为,点坐标为.(1)求过两点的直线解析式;(2)过点作直线与轴交于点,且使,求的面积.
(1)解不等式:; (2)解方程组
七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:.(请按照图⑴中卡片的形状来画图,并像图⑵那样标上每张卡片的代号).
材料:用平方差公式计算:解:原式= ====你能否看出材料中的规律?试着计算:(2+1) (22+1) (24 +1) ……(28+1)