若正整数a、b、c满足方程a2+b2=c2 ,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:(1) 商高数的三个数中,有几个偶数,几个奇数?(2) 写出各数都大于30的两组商高数。(3) 用两个正整数m、n(m>n)表示一组商高数,并证明你的结论。
如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E.已知C点的坐标是(6,-1),DE=3. (1)求反比例函数与一次函数的解析式; (2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?
解方程:(每小题4分,共8分) (1). (2)
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元. (1)求每台A型电脑和B型电脑的销售利润; (2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元. ①求y关于x的函数关系式; ②该商店购进A型、B型电脑各多少台,才能使销售总利润最大? (3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2). (1)求直线AB的解析式; (2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.
已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E. (1)求证:△AOD≌△EOC; (2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.