如图,小明利用长为 2 m 的标尺 ED 测量某建筑物 BC 的高度,观测点 A 、标尺底端 D 与建筑物底端 C 在同一条水平直线上,标尺 ED ⊥ AC .从点 A 处测得建筑物顶端 B 的仰角为 22 ° ,此时点 E 恰好在 AB 上;从点 D 处测得建筑物顶端 B 的仰角为 38 . 5 ° ,求建筑物 BC 的高度.(参考数据 sin 22 ° ≈ 0 . 37 , cos 22 ° ≈ 0 . 93 , tan 22 ° ≈ 0 . 40 , sin 38 . 5 ° ≈ 0 . 62 , cos 38 . 5 ° ≈ 0 . 70 , tan 38 . 5 ° ≈ 0 . 80 )
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D. 求证:(1)D是BC的中点; (2)△BEC∽△ADC; (3)若,求⊙O的半径。
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的函数表达式. (2)足球第一次落地点距守门员多少米?(取) (3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
如图,某大楼的顶部树有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=15米. (1)求点B距水平面AE的高度BH; (2)求广告牌CD的高度. (测角器的高度忽略不计,结果精确到0.1米.参考数据:)
已知二次函数(是常数). (1)求证:不论为何值,该函数的图象与x轴没有公共点; (2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC (2)若AB=4,AD=3,AE=3,求AF的长.