某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.
如图,DE∥BC,∠BGF=∠CDE,试说明FG∥CD.
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD先向右平移3个单位长度,再向下平移2个单位长度,试解决下列问题: (1)画出四边形ABCD平移后的图形四边形A′B′C′D′; (2)在四边形A′B′C′D′上标出点O的对应点O’; (3)四边形A′B′C′D′ 的面积=.
计算:如图,AB∥CD,∠B=61°,∠D=35°.求∠1和∠A的度数.
如图,填空:已知BD平分∠ABC,ED∥BC,∠1=20°. ∵BD平分∠ABC,∴=∠1=20°, 又∵ED∥BC,∴∠2==°. 理由是:. 又由BD平分∠ABC, 可知∠ABC==°. 又∵ED∥BC, ∴∠3==°, 理由是:.
计算: (1);(2);(3).