在平面直角坐标系中,矩形 ABCD 的顶点坐标为 A ( 0 , 0 ) , B ( 6 , 0 ) , C ( 6 , 8 ) , D ( 0 , 8 ) , AC , BD 交于点 E .
(1)如图(1),双曲线 y = k 1 x 过点 E ,直接写出点 E 的坐标和双曲线的解析式;
(2)如图(2),双曲线 y = k 2 x 与 BC , CD 分别交于点 M , N ,点 C 关于 MN 的对称点 C ' 在 y 轴上.求证 ΔCMN ~ ΔCBD ,并求点 C ' 的坐标;
(3)如图(3),将矩形 ABCD 向右平移 m ( m > 0 ) 个单位长度,使过点 E 的双曲线 y = k 3 x 与 AD 交于点 P .当 ΔAEP 为等腰三角形时,求 m 的值.
如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称都可以得到△. (1)△沿x轴向右平移得到△,则平移的距离是 个单位长度;△与△关于直线对称,则对称轴是 ; (2)连结AD,交OC于点E,求∠AEO的度数.
已知,求的值.
已知:如图,AE是△ABC外角的平分线,且AE∥BC. 求证:△是等腰三角形。
计算: (1) (2); (3) (4)
(本题14分)如图,在等边中,于点,点在边上运动,过点作与边交于点,连结,以为邻边作□,设□与重叠部分图形的面积为,线段的长为 (1)求线段的长(用含的代数式表示); (2)当四边形为菱形时,求的值; (3)直接写出与之间的函数关系式.