如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).
(1)求抛物线的解析式;
(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);
(3)过点C作 CD ∥ AB ,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且 ∠ BME = ∠ BDC ,当CN的值最大时,求点E的坐标.
如图,AB是⊙O的弦,半径OC、OD分别交AB与点E、F,且AE=BF,请你找出线段OE、OF的数量关系,并给予证明.
解方程:
计算:
用甲.乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:
(1)现配制这种饮料10千克,要求至少含有4200单位的维生素C,试写出所需甲种原料的质量x(千克)应满足的不等式. (2)如果还要求购买甲.乙两种原料的费用不超过72元,那么你能写出x(千克)应满足的另一个不等式吗?
某水果批发市场规定:批发苹果不少于1000千克时,可享受每千克2.2元的最优批发价,个体水果经营户小王携款x元到该批发市场除保留200元作生活费外,全部以最优惠批发价买进苹果.用不等式表示问题中x与已知数量间的不等关系。