如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).
(1)求抛物线的解析式;
(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);
(3)过点C作 CD ∥ AB ,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且 ∠ BME = ∠ BDC ,当CN的值最大时,求点E的坐标.
如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.⑴ 求点C的坐标;⑵ 连结BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP·BE,能否推出AP⊥BE?请给出你的结论,并说明理由; ⑶ 在直线BE上是否存在点Q,使得AQ2=BQ·EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为: ……①(其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式: ……②(其中).⑴ 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积;⑵ 你能否由公式①推导出公式②?请试试.
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为(m),面积为(m2),求关于的函数关系式,并写出自变量的取值范围;(2)当为何值时,所围苗圃的面积最大,最大面积是多少?
如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,则 BC的长度是多少?现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?(结果保留三个有效数字)【参考数据:】
现有7名同学测得某大厦的高度如下:(单位:)29.8 30.0 30.0 30.0 30.2 44.0 30.0(1) 在这组数据中,中位数是 , 众数是 ,平均数是 ;(2) 凭经验,你觉得此大厦大概有多高?请简要说明理由.