如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且 BP = CQ ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.
(1)求证: AP ⊥ BQ ;
(2)若 AB = 3 , BP = 2 PC ,求QM的长;
(3)当 BP = m , PC = n 时,求AM的长.
如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.
(1)解不等式,并把解集在数轴上表示出来.(2).解不等式组 并写出不等式组的整数解.(3).解方程:
先化简在求值:,其中
计算:
如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB =" 2OC=" 3. (1)求a,b的值; (2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式; (3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.