如图,矩形 ABCD中,过对角线 BD中点 O的直线分别交 AB, CD边于点 E、 F.
(1)求证:四边形 BEDF是平行四边形;
(2)只需添加一个条件,即 ,可使四边形 BEDF为菱形.
某校有学生2100人,在“文明我先行”的活动中,开设了“法律、礼仪、感恩、环保、互助”五门校本课程,规定每位学生必须且只能选择一门。为了解学生的报名意向学校随机调查了100名学生,并制成如右统计表: (1)在这次调查活动中,学校采取的调查的方式是(填写“普查”或“抽样调查”) (2)a=,b=,m=. (3)如果要画“校本课程报名意向扇形统计图”,那么“礼仪”类校本课程所对应的扇形圆心角的度数是. (4)请你统计,全校选择“感恩”类校本课程的学生约有人.
解不等式<1,并把它的解集在数轴上表示出来.
如图,在平面直角坐标系xOy中,点A(,0),点B(0,2),点C是线段OA的中点. (1)点P是直线AB上的一个动点,当PC+PO的值最小时, ①画出符合要求的点P(保留作图痕迹); ②求出点P的坐标及PC+PO的最小值; (2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.
在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB上. (1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是; (2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是;, (3)若∠ACB=∠ADE=2α(0°< α < 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE的数量关系,并加以证明(用含α的式子表示).
已知关于x的一元二次方程 . (1)如果该方程有两个不相等的实数根,求m的取值范围; (2)在(1)的条件下,当关于x的抛物线与x轴交点的横坐标都是整数,且时,求m的整数值.