如图,点 A, B, C, D是直径为 AB的⊙ O上的四个点, C是劣弧 BD ⏜ 的中点, AC与 BD交于点 E.
(1)求证: DC 2= CE• AC;
(2)若 AE=2, EC=1,求证:△ AOD是正三角形;
(3)在(2)的条件下,过点 C作⊙ O的切线,交 AB的延长线于点 H,求△ ACH的面积.
列方程解应用题 油桶制造厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套. 生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?
先化简,再求值:已知,其中,.
如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.
计算 (1)(4分):12-(-18)+(-7)-15 (2)化简(5分):. (3)(6分):. (4)(6分):已知一个角的补角比这个角的4倍大,求这个角。
已知:如图1,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ. 若设运动的时间为t(s)( 0<t<2 ),解答下列问题: (1)t为何值时,PQ∥BC? (2)设△AQP的面积为(),求与t之间的函数关系; (3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由; (4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在t,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.