如图,在矩形中,把点沿AE对折,使点落在上的点,已知.(1)求点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点,,且直线是该抛物线的切线,求抛物线的解析式;(3)直线与(2)中的抛物线交于、两点,点的坐标为,求证:为定值.
学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整统计图.请根据图中提供的信息解答以下问题: (1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数; (2)如果全年级共600名同学,请估算全年级步行上学的学生人数; (3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动.欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都“喜欢乘车”的学生的概率.
如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题: (1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标; (2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.
解不等式组,并把解集在数轴上表示出来.
在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动. (1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF,交于点P,请你写出AE与DF的关系,并说明理由; (2)如图②,当点E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)的结论还成立吗?(请直接回答“是”或“否”,不须证明) (3)如图③,当E、F分别在CD、BC的延长线上移动时,连接AE和DF,(1)的结论还成立吗?请说明理由; (4)如图④,当E、F分别在DC、CB上移动时,连接AE和DF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P的运动路径的草图,若AD=2,试求出线段CP的最小值.
如图,A,P,B,C是⊙O上的四点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D. (1)求证:△ADP∽△BDA; (2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论; (3)若AD=2,PD=1,求线段BC的长.