我市为全面推进"十个全覆盖"工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.
(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?
解方程: 2 x + x x + 3 = 1
如图,已知O是平面直角坐标系的原点,半径为1的⊙B经过点O,且与x、y 轴分别交于点A、C,点A的坐标为(-,0),AC的延长线与⊙B的切线OD 交于点D. (1)求OC的长和∠CAO的度数; (2)求点D的坐标; (3)求过点A,O,D三点的抛物线的解析式; (4)在(3)中,点P是抛物线上的一点,试确定点P的位置,使得△AOP的 面积与△AOC的面积相等.
在△ABC中,BC=6,AC=4,∠C=45o,在BC上有一动点P,过P作PD∥BA与AC相交于点D,连结AP,设BP=x,△APD的面积为y. (1)求y与x之间的函数关系式,并指出自变量x的取值范围; (2)是否存在点P,使△APD的面积最大?若存在,求出BP的长,并求出△APD面积的最大值.
一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
(1)用含x,y的式子表示购进C型手机的部数; (2)求出y与x之间的函数关系式; (3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元. ①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用) ②求出预估利润的最大值,并写出此时购进三款手机各多少部.
如图,已知∠MON=90º,等边△ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在∠MON内部. (1)当顶点B在射线ON上移动到B1时,连结AB1,请在∠MON内部作出以AB1为边的等边三角形AB1C1(保留作图痕迹,不写作法和证明); (2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D.求证: (3)连结CC1,试猜想∠ACC1为多少度?并证明你的猜想.