生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含的代数式表示).
“2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为: A − 经济和社会发展; B − 产业与应用; C − 技术与趋势; D − 安全和隐私保护; E − 电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:
(1)本次随机调查了多少名观众?
(2)请补全统计图,并求出扇形统计图中“ D − 安全和隐私保护”所对应的扇形圆心角的度数.
(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“ E − 电子商务”的人数是多少?
如图所示,正方形网格中, ΔABC 为格点三角形(即三角形的顶点都在格点上) :
①把 ΔABC 沿 BA 方向平移,请在网格中画出当点 A 移动到点 A 1 时的△ A 1 B 1 C 1 ;
②把△ A 1 B 1 C 1 绕点 A 1 按逆时针方向旋转 90 ° 后得到△ A 2 B 2 C 2 ,如果网格中小正方形的边长为1,求点 B 1 旋转到 B 2 的路径长.
如图,直线 y = − x + 3 与 x 轴、 y 轴分别相交于点 B 、 C ,经过 B 、 C 两点的抛物线 y = a x 2 + bx + c 与 x 轴的另一个交点为 A ,顶点为 P ,且对称轴为直线 x = 2 .
(1)求该抛物线的解析式;
(2)连接 PB 、 PC ,求 ΔPBC 的面积;
(3)连接 AC ,在 x 轴上是否存在一点 Q ,使得以点 P , B , Q 为顶点的三角形与 ΔABC 相似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价 0 . 1 × ( 18 − 10 ) = 0 . 8 (元 ) ,因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售 x ( x > 10 ) 只时,所获利润 y (元 ) 与 x (只 ) 之间的函数关系式,并写出自变量 x 的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当 10 < x ⩽ 50 时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
如图, AB 是 ⊙ O 的直径,点 P 在 BA 的延长线上,弦 CD ⊥ AB ,垂足为 E ,且 P C 2 = PE ⋅ PO .
(1)求证: PC 是 ⊙ O 的切线.
(2)若 OE : EA = 1 : 2 , PA = 6 ,求 ⊙ O 的半径.