如图,直线 y = − x + 3 与 x 轴、 y 轴分别相交于点 B 、 C ,经过 B 、 C 两点的抛物线 y = a x 2 + bx + c 与 x 轴的另一个交点为 A ,顶点为 P ,且对称轴为直线 x = 2 .
(1)求该抛物线的解析式;
(2)连接 PB 、 PC ,求 ΔPBC 的面积;
(3)连接 AC ,在 x 轴上是否存在一点 Q ,使得以点 P , B , Q 为顶点的三角形与 ΔABC 相似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
如图,在一块长为20m,宽为15m的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m2,如果设小路的宽度为x m,那么下列方程正确的是()
如图1,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠. (1)操作1:固定△ABC,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿方向平移的距离为___________; (2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由; (3)在(2)的情形下,连PQ,设BP=x,记△MPQ的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.
如图,正方形ABCD的长为1, 点E是AD边上的动点且从点A沿AD向D运动, 以BE为边,在BE的上方作正方形BEFG,为DC与EF的交点,请探索: (1)连接CG,线段AE与CG是否相等? 请说明理由. (2)设AE=x, CG=y, 请确定y与x的函数关系式并说明自变量的取值范围. (3)连接BH, 当点E运动到边AD上的某一点时将有△BEH∽△BAE,请你指出这一点的位置,并说明理由.
为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%. (1)求2007年同期试点产品类家电销售量为多少万台(部)? (2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.