如图,直线 y = − x + 3 与 x 轴、 y 轴分别相交于点 B 、 C ,经过 B 、 C 两点的抛物线 y = a x 2 + bx + c 与 x 轴的另一个交点为 A ,顶点为 P ,且对称轴为直线 x = 2 .
(1)求该抛物线的解析式;
(2)连接 PB 、 PC ,求 ΔPBC 的面积;
(3)连接 AC ,在 x 轴上是否存在一点 Q ,使得以点 P , B , Q 为顶点的三角形与 ΔABC 相似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).(1)根据题意,请你在图中画出△ABC;(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.
在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.
为了测量旗杆的高度AB,在离旗杆10米的C处,用高1.2米的测角仪CD测得旗杆顶部A的仰角为40°,求旗杆AB的高.(精确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
如图,△ABC中,DE∥BC,EF∥AB.证明:△ADE∽△EFC.
解方程: