如图所示,正方形网格中, ΔABC 为格点三角形(即三角形的顶点都在格点上) :
①把 ΔABC 沿 BA 方向平移,请在网格中画出当点 A 移动到点 A 1 时的△ A 1 B 1 C 1 ;
②把△ A 1 B 1 C 1 绕点 A 1 按逆时针方向旋转 90 ° 后得到△ A 2 B 2 C 2 ,如果网格中小正方形的边长为1,求点 B 1 旋转到 B 2 的路径长.
.有理数a、b所表示的点在数轴上的位置如图所示,请在数轴上标出它们的相反数,并将这四个数及0按从小到大的顺序用“<”连接起来.
.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米): +15,-4,+13,―10,―12,+3,―13,―17 (1)最后一名老师送到目的地时,小王距出车地点的距离是多少? (2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
(本小题满分12分)如图,抛物线y=Ax2+C(A≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N. (1)求此抛物线的表达式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数.
(本小题满分12分)对于二次函数y=x²-3x+2和一次函数y=-2x+4,把y=t(x²-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务: 【尝试】 (1)当t=2时,抛物线y=t(x²-3x+2)+(1-t)(-2x+4)的顶点坐标为 ; (2)判断点A是否在抛物线L上; (3)求n的值; 【发现】 通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 . 【应用】 二次函数是二次函数y=x²-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由
(本小题满分10分)某经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.