我们知道,顶点坐标为 ( h , k ) 的抛物线的解析式为 y = a ( x - h ) 2 + k ( a ≠ 0 ) .今后我们还会学到,圆心坐标为 ( a , b ) ,半径为 r 的圆的方程 ( x - a ) 2 + ( y - b ) 2 = r 2 ,如:圆心为 P ( - 2 , 1 ) ,半径为3的圆的方程为 ( x + 2 ) 2 + ( y - 1 ) 2 = 9 .
(1)以 M ( - 3 , - 1 ) 为圆心, 3 为半径的圆的方程为 .
(2)如图,以 B ( - 3 , 0 ) 为圆心的圆与 y 轴相切于原点, C 是 ⊙ B 上一点,连接 OC ,作 BD ⊥ OC ,垂足为 D ,延长 BD 交 y 轴于点 E ,已知 sin ∠ AOC = 3 5 .
①连接 EC ,证明: EC 是 ⊙ B 的切线;
②在 BE 上是否存在一点 Q ,使 QB = QC = QE = QO ?若存在,求点 Q 的坐标,并写出以 Q 为圆心,以 QB 为半径的 ⊙ Q 的方程;若不存在,请说明理由.
如图,在四边形ABCD中,∠C=60º,∠B=∠D=90º,AD=2AB,CD=3,求BC的长.
已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.
已知:如图,在平面直角坐标系中,抛物线过点A(6,0)和点B(3,). (1)求抛物线的解析式; (2)将抛物线沿x轴翻折得抛物线,求抛物线的解析式; (3)在(2)的条件下,抛物线上是否存在点M,使与相似?如果存在,求出点M的坐标;如果不存在,说明理由.
如图,和都是以A为直角顶点的等腰直角三角形,连结BD,BE,CE,延长CE交AB于点F,交BD于点G. (1)求证:; (2)若是边长可变化的等腰直角三角形,并将绕点旋转,使CE的延长线始终与线段BD(包括端点B、D)相交.当为等腰直角三角形时,求出的值.
如图,在Rt中,,以AC为直径的⊙O交AB于点D,E是BC的中点. (1)求证:DE是⊙O的切线; (2)过点E作EF⊥DE,交AB于点F.若AC=3,BC=4,求DF的长.