如图1, ΔABC 中,点 D , E , F 分别在边 AB , BC , AC 上, BE = CE ,点 G 在线段 CD 上, CG = CA , GF = DE , ∠ AFG = ∠ CDE .
(1)填空:与 ∠ CAG 相等的角是 ;
(2)用等式表示线段 AD 与 BD 的数量关系,并证明;
(3)若 ∠ BAC = 90 ° , ∠ ABC = 2 ∠ ACD (如图 2 ) ,求 AC AB 的值.
计算:(4x2-2xy+y2)(2x+y).
已知ab2=-6,求-ab(a2b5-ab3-b)的值.
计算:0.125(a2+b2)3(a-b)2·16(-a2-b2)3(b-a)3.
先化简,再求值:5x(x2-2x+4)-x2(5x-2)+(-4x)(2-2x),其中x=-.
计算:3a(2a-5)+2a(1-3a).