如图1, ΔABC 中,点 D , E , F 分别在边 AB , BC , AC 上, BE = CE ,点 G 在线段 CD 上, CG = CA , GF = DE , ∠ AFG = ∠ CDE .
(1)填空:与 ∠ CAG 相等的角是 ;
(2)用等式表示线段 AD 与 BD 的数量关系,并证明;
(3)若 ∠ BAC = 90 ° , ∠ ABC = 2 ∠ ACD (如图 2 ) ,求 AC AB 的值.
在一次青年歌手演唱比赛中,评分办法采用五位评委现场打分,每位选手的晟后得分为去掉最高分、最低分后的平均数.评委给1号选手的打分是:9.5分,9.3分,9.8分,8.8分,9.4分.(1)求l号选手的最后得分;(2)节目组为了增加的节目观赏性,设置了一个亮分环节:主持人在公布评委打分之前,选手随机请两位评委率先亮出他的打分.请用列表法或画树状图的方法求“l号选手随机 请两位评委亮分,刚好一个是最高分、一个是最低分”的概率.
已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E. (1)求证:MC•BC=DM•AC; (2)若tanA=,AD=6,求BE的长.
已知直线y=kx+b经过点A(5,0),B(1,4). (1)求直线AB的解析式; (2)若直线y=2x-4与直线AB相交于点C,求点C的坐标; (3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
如图,抛物线y = —2x 2 +x+1交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N. (1)求线段AB长; (2)证明:OP=PC; (3)当点P在第一象限时,设AP长为m,⊿OBC的面积为S,请求出S与m间的函 数关系式,并写出自变量m的取值范围; (4)当点P在线段AB上移动时,点C也随之在直线x=1上移动,⊿PBC是否可能成为等腰三角形?如果可能,直接写出所有能使⊿PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!) (2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。