光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面 AB 与水杯下沿 CD 平行,光线 EF 从水中射向空气时发生折射,光线变成 FH ,点 G 在射线 EF 上,已知 ∠ HFB = 20 ° , ∠ FED = 45 ° ,求 ∠ GFH 的度数.
矩形中,点、分别在、上,为等腰直角三角形,求的面积.
如图,正方形ABCD的对角线AC是菱形AEFC的一边,求∠FAB的度数
已知,如图,BD⊥AM于点D,CE⊥AN于点E,BD、CE交点F,CF=BF,求证:点F在∠A的平分线上.
如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC. (1)求AB和OC的长; (2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C. (1)求证:四边形ABCD是正方形; (2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.